Abstract

In recent years, new laser and camera technology have enabled the development of high-speed imaging diagnostics for measurements at frame rates commensurate with the time scales of turbulent mixing, combustion, and emission formation in internal combustion engines. The ability to study the evolution of in-cylinder flow, fuel/air mixing, ignition, and combustion within individual cycles and for many consecutive cycles provides new insights into the physics and chemistry of internal combustion engine performance. Data for model development and device development are obtained with unprecedented access to the identification of random events such as cycle to cycle variation and ignition instabilities. This paper summarizes high-speed diagnostics developments with a focus on application to spark-ignition direct-injection gasoline engines. A range of optical techniques is described along with examples of applications in research and near-production engines. Measurements of in-cylinder velocities were conducted with particle image velocimetry. The spray evolution was followed with Mie scattering. Quantitative fuel distributions were recorded with laser-induced fluorescence. Fuel impingement on surfaces was quantified with refractive index matching. Combined velocity and fuel measurements were used to study ignition reliability. Chemiluminescence techniques provided insights into the evolution of the spark plasma as well as the growing flame kernel. Chemiluminescence and black body radiation imaging yielded insights into the formation and oxidation of soot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call