Abstract

The here presented work describes a surface profiling technique, for which the term closed-loop optical coherence topography (CLOCT) was proposed [1]. This technique is a scanning beam, servo-locked variation of low-coherence interferometry. It allows for the sub-wavelength-resolution tracking of a weakly scattering macroscopic-scale surface with the absence of significant real-time computational overhead and is thus particularly well suited to real-time surface profiling of in vivo, macroscopic biological surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.