Abstract

A new method for the high-speed computation of double-precision floating-point reciprocal, division, square root, and inverse square root operations is presented in this paper. This method employs a second-degree minimax polynomial approximation to obtain an accurate initial estimate of the reciprocal and the inverse square root values, and then performs a modified Goldschmidt iteration. The high accuracy of the initial approximation allows us to obtain double-precision results by computing a single Goldschmidt iteration, significantly reducing the latency of the algorithm. Two unfolded architectures are proposed: the first one computing only reciprocal and division operations, and the second one also including the computation of square root and inverse square root. The execution times and area costs for both architectures are estimated, and a comparison with other multiplicative-based methods is presented. The results of this comparison show the achievement of a lower latency than these methods, with similar hardware requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.