Abstract

HypothesisMost droplets on high-efficiency condensing surfaces have radii of less than 100 μm, but conventional droplet transport methods (such as wettability-gradient surfaces and structural-curvature-gradient surfaces) that rely on the unbalanced force of three-phase lines can only transport millimeter-sized droplets efficiently. Regulating high-speed directional transport of condensate droplets is still challenging. Therefore, we present a method for condensate droplet transportation, based on the reaction force of the superhydrophobic saw-tooth surfaces to the liquid bridge, the condensate droplets could be transported at high speed and over long distances. ExperimentsThe superhydrophobic saw-tooth surfaces are fabricated by femtosecond laser ablation and chemical etching. Condensation experiments and luminescent particle characterization experiments on different surfaces are conducted. Aided by the theoretical analysis, we illustrate the remarkable performance of condensate droplet transportation on saw-tooth surfaces. FindingsCompared with conventional methods, our method improves the transport velocity and relative transport distance by 1–2 orders of magnitude and achieves directional transport of the smallest condensate droplet of about 2 μm. Furthermore, the superhydrophobic saw-tooth surfaces enable multi-hop directional jumping of condensate droplets, leading to cross-scale increases in transport distances from microns to decimeters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.