Abstract

The load-carrying capacity of composite structures under water-based impulsive loads is evaluated in relation to different core materials and load intensity. The analysis focuses on the role of core density and the effect of varying structural attributes and environmental conditions on deformation and failure mechanisms in monolithic as well as sandwich composites. The structures analyzed are simply supported planar composites with PVC foam cores and E-glass/vinylester facesheets. For the analysis carried out, the material properties of the sandwich cores are varied while the total mass is kept constant. The structures are subjected to impulsive loads of different intensities using a novel new projectile-impact-based facility called the Underwater Shock Loading Simulator (USLS). In-situ high-speed digital imaging and postmortem analysis are used to study the deformation and failure of individual components, focusing on the effects of loading intensities, failure modes and material heterogeneity. Depending on the loading rate, shear cracking and/or collapse are the primary failure modes of the polymeric foam cores. Core density and height also significantly influence the response and failure modes. On a per unit weight basis, structures with low density cores consistently outperform structures with high density cores because the former undergo smaller deflections, acquire lower velocities and transmit a smaller fraction of incident impulses. Scaling relations in the form of deflection and impulse transmitted as functions of core density and load intensity are obtained to provide guidance for structural design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.