Abstract

In the era of big data, the growing demand for data transmission capacity requires the communication band to expand from the traditional optical communication windows (∼1.3-1.6 μm) to the 2 μm band (1.8-2.1 μm). However, the largest bandwidth (∼30 GHz) of the current high-speed photodetectors for the 2 μm window is considerably less than the developed 1.55 μm band photodetectors based on III-V materials or germanium (>100 GHz). Here, we demonstrate a high-performance carbon nanotube (CNT) photodetector that can operate in both the 2 and 1.55 μm wavelength bands based on high-density CNT arrays on a quartz substrate. The CNT photodetector exhibits a high responsivity of 0.62 A/W and a large 3 dB bandwidth of 40 GHz (setup-limited) at 2 μm. The bandwidth is larger than that of existing photodetectors working in this wavelength range. Moreover, the CNT photodetector operating at 1.55 μm exhibits a setup-limited 3 dB bandwidth over 67 GHz at zero bias. Our work indicates that CNT photodetectors with high performance and low cost have great potential for future high-speed optical communication at both the 2 and 1.55 μm bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call