Abstract

High-speed atomic force microscopy (HS-AFM) enables visualizing dynamic behaviors of biological molecules under physiological conditions at a temporal resolution of 1s or shorter. A small cantilever with a high resonance frequency is crucial in increasing the scan speed. However, detecting mechanical resonances of small cantilevers is technically challenging. In this study, we constructed an atomic force microscope using a digital versatile disc (DVD) pickup head to detect cantilever deflections. In addition, a flexure-guided scanner and a sinusoidal scan method were implemented. In this work, we imaged a grating sample in air by using a regular cantilever and a small cantilever with a resonance frequency of 5.5 MHz. Poor tracking was seen at the scan rate of 50 line/s when a cantilever for regular AFM imaging was used. Using a small cantilever at the scan rate of 100 line/s revealed no significant degradation in the topographic images. The results indicate that a smaller cantilever can achieve a higher scan rate and superior force sensitivity. This work shows the potential for using a DVD pickup head in future HS-AFM technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call