Abstract

Anaerobic co-digestion of food waste (FW) and rice straw (RS) in continuously stirred tank reactor (CSTR) at high organic loading rate (OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid (VS) concentration of more than 3 gVS · L−1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand (COD) and volatile fatty acids (VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 mL·gV·S−1 · d−1 at a mass ratio (FW/RS) of 3 : 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than mono-digestions in higher organic loading system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call