Abstract

The major element compositions of 93 low specific gravity (<2.60), high-silica (>60%) glass particles, from a sample of lunar fines (14259,20) were determined by electron microprobe analyses. The size, shape, abundance, mineralogy and major element composition of most (>60%) of the high-silica glasses is consistent with their being fragments of interstitial glass from mare basalts. However, one group of 30 glasses with between 72% and 78% SiO 2 and an average of ∼2.6% FeO can be distinguished from other high-silica glasses both chemically and petrographically. Glass particles with this composition do not contain crystalline inclusions and are fairly homogeneous not only within a single particle, but also from particle to particle. The chemistry and petrology of these glasses suggest that they are not fragments of interstitial glass or shock-melted particles from a “granitic” source rock. Rather, the homogeneity and lack of crystalline inclusions suggest that this group of high-silica glasses was the product of lunar acidic volcanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.