Abstract

We have developed surface acoustic wave (SAW) sensors with high sensitivity and a reversible response at room temperature (RT). The sensitive area of the sensor was prepared from vertically aligned graphene sheets, like carbon nanowalls (CNWs), which were deposited onto the quartz SAW sensor substrate. The CNWs were obtained by RF plasma-enhanced chemical vapor deposition (PECVD) at 600 °C, and their sensitivity was subsequently enhanced through hydrogen plasma treatment. The SAW sensors were tested at H2 and CH4 at RT, and they exhibited a reversible response for both gases at concentrations between 0.02% and 0.1%, with a detection limit of a few ppm. The additional hydrogen plasma treatment preserved the lamellar structure, with slight modifications to the morphology of CNW edges, as observed by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) investigations revealed the presence of new functional groups, a significant number of defects and electron transitions after the treatment. Changes in the chemical state on the CNW surface are most probably responsible for the improved gas adsorption after plasma treatment. These results identify CNWs as a promising material for designing new SAW sensors, with the possibility of using plasma treatments to enhance the detection limit below the ppm level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.