Abstract

A gas pressure sensor composed of cascaded Fabry-Perot interferometers (FPIs) based on Vernier effect was demonstrated. Two hollow silica tubes (HSTs) with different inner diameters were used to construct the FP cavities, and spliced with single-mode fiber (SMF) to make a gas pressure sensor with a closed cavity FPI and an open cavity FPI in series. The experimental results show that the proposed sensor achieves a high gas pressure sensitivity of −44.31 nm/MPa in the range of 0–2.2 MPa due to the Vernier amplification effect and a very low temperature cross-sensitivity of −0.6 KPa/℃. This sensor has high sensitivity, wide measurement range, small temperature crosstalk, good robustness and low production cost in gas pressure measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.