Abstract

We introduce the development of pixel-structured screens with a thallium-doped CsI (CsI:Tl) scintillator for indirect digital X-ray imaging sensors. The indirect-conversion detection method based on the pixel-structured CsI:Tl scintillator provides high spatial resolution X-ray imaging without sacrificing the light spread in thick scintillation layers. The scintillation screens were fabricated by using a vacuum deposition process and filling the CsI:Tl scintillating powders into a two-dimensional pixel-structured silicon array. Pixel structures with 100 μm and 50 μm pixel sizes with wall widths of 20 μm and 200 μm thickness were prepared and the fabricated CsI:Tl scintillating powders were filled into the trench of the pixel structure through a vacuum process. The final scintillation screens with 2.5 cm × 2.5 cm size were prepared and directly coupled to a CCD image sensor with an optical lens for performance evaluation of X-ray imaging. The imaging performance of the samples was investigated in terms of the relative light intensity, the X-ray linearity and the spatial resolution under practical X-ray exposure conditions. These preliminary results imply that pixel-structured CsI:Tl scintillating screens show high spatial resolution by less lateral spread of the emitted visible photons within pixel-structured silicon arrays. However, these X-ray detectors still require improved X-ray sensitivity by coating the reflective layer onto an inner silicon wall surface and filling the scintillating power into pixel structures completely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call