Abstract

AbstractIncreased surface temperatures (0.7°C per decade) in the Arctic affects polar ecosystems by reducing the extent and duration of annual snow cover. Monitoring of these important ecosystems needs detailed information on snow cover properties at resolutions (<100 m) that influence ecological habitats and permafrost thaw. A machine learning method using topographic parameters with the Random Forest (RF) algorithm previously developed in alpine environments was applied over an arctic landscape for the first time. The topographic parameters used in the RF algorithm were Topographic Position Index (TPI) and up‐wind slope index (Sx), which were estimated from the freely available Arctic DEM at 2 m resolution. Addition of an ecotype parameter (proxy for vegetation height) showed minimal predictive improvement. Using RF, snow depth distributions were predicted from topographic parameters with a root mean square error = 8 cm (23%) (R2 = 0.79) at 10 m resolution for an arctic watershed (1500 km2) in western Nunavut, Canada.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.