Abstract

Bacteriophage DNAs annealed into linear oligomeric concatemers were used to examine the quantitative pulsed-field gel electrophoretic behavior of different-sized DNAs as a function of electrical field strength and pulse time. Three zones of resolution are observed for increasingly larger DNAs. In the first two zones, the electrophoretic mobility decreases linearly with increasing DNA size. The separation in zone 2 is roughly twice that in zone 1. The largest DNA molecules do not resolve at all and migrate in a compression zone. Mobility in zone 1 increases linearly with the electric field strength and decreases with the inverse of the pulse time. The behavior of DNA in zone 2 is qualitatively similar. However, the effect of field strength and pulse time on the separations in each zone is quite different. The results for zone 1 are generally consistent with the predictions of several existing physical models of pulsed-field gel electrophoresis, but no model accounts for all of the observed behavior in the three zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.