Abstract

Estimating the parameters of polynomial-phase and chirp signals in sensor arrays is an important task which is frequently encountered in practical applications. Several authors have approached this problem using the narrow-band setting. In this paper, we present an optimal (maximum likelihood) algorithm for estimating the direction-of-arrival (DOA) and frequency parameters of multiple wideband constant-amplitude polynomial-phase signals. Since the proposed ML estimator is computationally intensive, an approximate solution is considered, originating from the analysis of the likelihood function in the single polynomial-phase signal case. As a result, the so-called polynomial-phase beamformer is obtained. Its simplified version referred to as the chirp beamformer is considered in detail. Explicit expressions for the corresponding Cramer-Rao bound (CRB) are presented as well. The performances of the exact ML algorithm and the chirp beamformer are compared to the CRB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.