Abstract

As part of an extensive study of polyacrylonitrile (PAN) and mesophase pitch-based carbon fibers, high resolution scanning electron microscopy (HRSEM) is shown to provide additional insight into understanding and modelling microstructural origins of mechanical properties of carbon fiber. Although carbon fiber has been studied extensively, no sufficiently clear relationship between structure and mechanical properties such as elastic modulus and compressive strength has yet been developed from quantitative TEM and WAXS investigations.In this study, HRSEM data of selected carbon fibers is used to illustrate the power of HRSEM to elucidate structural differences likely accounting for changes in mechanical properties not sensitively probed either by TEM or WAXS. The three-dimensional nature of SEM imaging with accompanying high resolution permits a clearer visualization and more detailed examination of regional structures within carbon fiber over two-dimensional TEM and globally averaged WAXS data.The design of the high resolution, field emission SEM permits low voltage imaging of poorly conducting samples with resolution an order of magnitude greater than a conventional tungsten hairpin filament SEM under the same operating voltage and sample preparation conditions. Although carbon fiber is a relatively conductive material, charging effects can be seen in uncoated PAN fibers above 3.0 keV in a conventional SEM. Lower accelerating voltages are necessary for uncoated imaging of these fibers, but become impractical due to degradation of conventional SEM performance at these voltages. Uncoated sample imaging is preferred to prevent conventional evaporation or sputter coating techniques from obscuring or altering the sample surface, although charging effects may then be a problem. The high resolution, field emission SEM solves these competing voltage/ charging/ resolution issues for poorly conducting materials with the very nature of its design; the high brightness of the electron gun at low voltage coupled with the “in lens” sample placement and above the objective lens detector dramatically improve the resolution of these instruments, especially at low voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.