Abstract
With the development of remote sensing technology, high-resolution (HR) remote sensing optical images have gradually become the main source of change detection data. Albeit, the change detection for HR remote sensing images still faces challenges: 1) in complex scenes, a region contains a large amount of semantic information, which makes it difficult to accurately locate the boundaries between different semantics in the feature maps and 2) due to the inability to maintain consistent conditions such as light, weather, and other factors when acquiring bitemporal images, confounding factors such as the style of bitemporal data that are not related to change detection can cause detection difficulties. Therefore, a change detection method based on feature interaction and multitask learning (FMCD) is proposed in this article. To improve the ability to detect changes in complex scenes, FMCD models the context information of features through a multilevel feature interaction module, so as to obtain representative features, and to improve the sensitivity of the model to changes, the interaction between two temporal features is realized through the mix attention block (MAB). In addition, to eliminate the influence of weather and other factors, FMCD adopts a multitask learning strategy, takes domain adaptation as an auxiliary task, and maps the features of bitemporal images to the same space through the feature relationship adaptation module (FRAM) and feature distribution adaptation module (FDAM). Experiments on three datasets show that the proposed method is superior to other state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.