Abstract

Diffusion tensor imaging (DTI) plays a vital role in identifying white matter fiber bundles. Achievable imaging resolution and imaging time demands remain the major challenges in detecting small fiber bundles with current clinical DTI sequences. A novel reduced field of view ultra-high-resolution DTI technique named eZOOM (elliptically refocused zonally oblique multislice) was developed. A small circular disk was imaged using spatially selective radiofrequency (RF) pulses, reducing the imaging matrix size. The frequency profile of the spectral-spatial refocusing RF pulse provided intrinsic fat suppression, eliminating the need for fat saturation pulses. Multislice DTI at a resolution of 0.35 × 0.35 mm in a celery fiber phantom was successfully performed by scanning an 8-cm field of view at 3T. An adequate diffusion-to-noise ratio (DNR >20) was achieved for a 25-min acquisition using a direct-sampling RF receiver. Human subjects (n = 7) were scanned at resolutions of 0.47 × 0.47 mm having a DNR <20 within a 75-min scanning time, requiring further enhancements to increase the signal-to-noise ratio. The new eZOOM-DTI method offers multislice DTI at ultra-high imaging resolutions substantially exceeding those available with current echo-planar DTI techniques. Parallel and fast spin echo methods can be combined with eZOOM to improve SNR and DNR in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.