Abstract

Abstract Hybrid CdZnTe, CdTe, GaAs, selenium and PbI 2 pixel detector arrays with 50×50 μm 2 pixel sizes that convert X-rays directly into charge signals are under development at NOVA for application to digital mammography. These detectors have superior X-ray quantum efficiency compared to either emulsion-based film, phosphor-based detectors or other low-Z, solid-state detectors such as silicon. During this work, CdZnTe and CdTe pixel detectors gave the best results. The other detectors are at very early stages of development and need significant improvement. Among other detectors, selenium is showing the highest potential. The preliminary results show that single crystal CdZnTe detectors yield better results in Detective Quantum Efficiency (DQE) as well as in images obtained from phantoms, compared to the polycrystalline CdZnTe detectors. This is due to the non-uniformities in the polycrystaline CdZnTe that degrade the charge transport properties. In this paper, preliminary results from thin (0.15 to 0.2 mm) CdZnTe and CdTe detectors will be presented in terms of MTF, DQE and phantom images. Because of the charge-coupling limitation of the readout Application Specific Integrated Circuit (ASIC) that was originally designed for Si detectors, the detector is biased to collect holes from the input. This charge collection mode limits the CdZnTe detector performance. Their DQE measurements yield 25% and 65% for the polycrystal and single-crystal CdZnTe detectors, respectively. Polycrystal CdTe test detectors were also hybridized to the same type charge readout chip. Since CdTe has much longer hole-propagation lengths compared to CdZnTe, it shows better performance in the hole-collecting mode. However, it suffers from polarization. Excellent images were also obtained from the CdTe detectors. Future work to redesign the readout ASIC and thus improve the detector performance will be discussed. These detectors can also be used for other medical radiography with increased thickness and also for industrial imaging such as non-destructive evaluation and non-destructive inspection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.