Abstract
The photodissociation of ethyl iodide at 279.71, 281.73, 304.02 and 304.67 nm has been studied on our new mini-photofragment translational spectrometer with a total flight path of only 5 cm. Some vibrational peaks are firstly resolved in the TOF spectra of I*(2P1/2) and I(2P3/2) channels. These vibrational peaks are assigned to the excitation states (v2 = 0, 1, 2, …) of the umbrella mode (v2, 540 cm−1) of the photofragment C2H5, and the distribution of the vibrational states is obtained. The dissociation energy has been determined to be D0(C-I)=2.314 ± 0.03 eV. The energy partitioning of the available energy (Eavl=ET+Eint=ET+EV,R) calculated from our experimental data Ēint / Eavl = 22.1% at 281.73 nm, 22.4% at 304.02 nm for the I* channel, and Ēint / Eavl = 25.2% at 279.71 nm, 25.9% at 304.67 nm for the I channel, seem to be more reliable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.