Abstract

We developed a near-infrared (NIR) dual-channel oxygen-corrected laser heterodyne radiometer (LHR) in the ground-based solar occultation mode for measuring vertical profile of wind field in the troposphere and low stratosphere. Two distributed feedback (DFB) lasers centered at 1.27 µm and 1.603 µm were used as local oscillators (LO) to probe absorption of oxygen (O2) and carbon dioxide (CO2), respectively. High-resolution atmospheric O2 and CO2 transmission spectra were measured simultaneously. The atmospheric O2 transmission spectrum was used to correct the temperature and pressure profiles based on a constrained Nelder-Mead's simplex method. Vertical profiles of atmospheric wind field with an accuracy of ∼5 m/s were retrieved based on the optimal estimation method (OEM). The results reveal that the dual-channel oxygen-corrected LHR has high development potential in portable and miniaturized wind field measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call