Abstract
We present an instrument that combines high-resolution optical tweezers and multicolor confocal fluorescence spectroscopy. Biological macromolecules exhibit complex conformation and stoichiometry changes in coordination with their motion and activity. To further our understanding of the complex machinery of life, we need methods that can simultaneously probe more than one degree of freedom of single molecules and complexes. Fluorescence optical tweezers, or "fleezers," combine the capabilities of optical tweezers and single-molecule fluorescence microscopy into a single instrument. Here we present the latest generation of a high-resolution fleezers instrument integrated with multicolor fluorescence spectroscopy. The tweezers portion of the instrument can manipulate biological macromolecules with pN scale forces while measuring subnanometer distances. Simultaneous with tweezers measurements, the multicolor fluorescence capability allows the direct observation of multiple molecules or multiple degrees of freedom which allows, for example, the observation of multiple proteins simultaneously within a complex. The instrument incorporates three fluorescence excitation lasers, all sourced from a single-mode optical fiber allowing a reliable alignment scheme, that allows, for example, three independent fluorescent probes or fluorescence resonance energy transfer (FRET) measurements and also increases flexibility in the choice of fluorescent probes. To avoid photobleaching and improve tweezers stability, the instrument implements a timesharing (using a single trap laser to produce a pair of traps via rapid switching between two locations) and interlacing (turning the trapping beam off when the fluorescence excitation beams are on and vice versa) scheme using acousto-optic modulators (AOM) to rapidly and precisely modulate lasers. Our latest "random phase" trap AOM control method obliterates previous residual trap positioning and bead position measurement errors. Here we present the general design principles and detailed construction and testing protocols for the instrument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.