Abstract

We present a case study on Eu3+-doped Y2O3 transparent ceramics in which high-resolution laser spectroscopy is used as a material characterization tool. By comparing the results from coherent and incoherent optical spectroscopy with other characterization methods, we show that optical techniques can deliver supplementary information about the local environment of the activator ions in materials. Thus, high-resolution spectroscopy may be of interest for the investigation of a wider range of rare earth doped optical materials beyond materials studied for quantum information technology. The refinement of optical spectroscopy for the study of narrow optical transitions in rare earth ion single crystals has demonstrated that these techniques are extremely sensitive tools for probing the local environment of the rare earth ion. These techniques, such as photon echo experiments, have been important in developing materials for quantum information technology and spectral filtering applications. Here, we apply thes...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.