Abstract

To date, surface plasmon resonance (SPR) spectroscopy identifies molecules via specific bindings with their ligands immobilized on a surface. We demonstrate here that a high-resolution multiwavelength SPR technique can measure the electronic states of the molecules and thus allow direct identification of the molecules. Using this new capability, we have studied the electronic and conformational differences between the oxidized and reduced states of cytochrome c immobilized on a modified gold electrode. When the wavelength of the incident light is far away from the optical absorption bands of the protein, a approximately 0.008 degree decrease in the resonance angle, due to a conformational change, occurs as the protein is switched from the oxidized to reduced states. When the wavelength is tuned to the absorption bands, the resonance angle oscillates at the wavelengths of the absorption peaks, which provides electronic signatures of the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.