Abstract

BackgroundThe brown planthopper (Nilaparvata lugens Stål; BPH), one of the most destructive pests of rice, has proven to be a substantial threat, conferring enormous production losses in Asia and becoming a difficult challenge to manipulate and control under field conditions. The continuous use of insecticides promotes the resurgence of BPH, which results in resistant varieties adapting through the upgrading of new BPH biotypes. To overcome resistance acquired by BPH against resistance varieties, different forms of novel resistant gene fusions act as functional domains for breeding to enhance insect resistance.ResultsThe current study reports on the novel BPH resistance gene Bph36 derived from two introgression lines (RBPH16 and RBPH17) developed from wild rice GX2183 which was previously reported to be resistant to BPH. Using two F2 crossing populations (Kangwenqizhan × RBPH16 and Huanghuazhan × RBPH17) in a bulked segregant analysis (BSA) for identification of resistant genes and QTL analysis, two QTLs for BPH resistance were generated on the long and short arms of chromosome 4, which was further confirmed by developing BC1F2:3 populations by backcrossing via marker assisted selection (MAS) approach. One BPH resistance locus on the short arm of chromosome 4 was mapped to a 38-kb interval flanked by InDel markers S13 and X48, and then was named Bph36, whereas another locus on the long arm of chromosome 4 was also detected in an interval flanked by RM16766 and RM17033, which was the same as that of Bph27. An evaluation analysis based on four parameters (BPH host selection, honeydew weight, BPH survival rate and BPH population growth rate) shows that Bph36 conferred high levels antibiosis and antixenosis to BPH. Moreover, Bph36 pyramided with Bph3, Bph27, and Bph29 through MAS into elite cultivars 9311 and MH511 (harbored Xa23), creating different background breeding lines that also exhibited strong resistance to BPH in the seedling or tillering stage.ConclusionBph36 can be utilized in BPH resistance breeding programs to develop high resistant rice lines and the high-resolution fine mapping will facilitate further map-based cloning and marker-assisted gene pyramiding of resistant gene. MAS exploited to pyramid with Bph3, Bph27, Bph29, and Xa23 was confirmed the effectiveness for BPH resistance breeding in rice and provided insights into the molecular mechanism of defense to control this devastating insect.

Highlights

  • The brown planthopper (Nilaparvata lugens Stål; BPH), one of the most destructive pests of rice, has proven to be a substantial threat, conferring enormous production losses in Asia and becoming a difficult challenge to manipulate and control under field conditions

  • RBPH16 and RBPH17 were respectively crossed with KW and HHZ to develop F2:3 mapping populations

  • Based on the QTL analysis, the positive F1 (KW/RBPH16) individuals were continuously backcrossed with KW to developed BC1F1, BC2F1, BC3F1, and BC4F1 populations, and each backcrossed individual was verified with tightly linked markers

Read more

Summary

Introduction

The brown planthopper (Nilaparvata lugens Stål; BPH), one of the most destructive pests of rice, has proven to be a substantial threat, conferring enormous production losses in Asia and becoming a difficult challenge to manipulate and control under field conditions. To overcome resistance acquired by BPH against resistance varieties, different forms of novel resistant gene fusions act as functional domains for breeding to enhance insect resistance. The brown planthopper (Nilaparvata lugens Stål; BPH) is the most destructive insect pest of rice found throughout tropical Asia where rice is widely planted (Cha et al 2008). The extensive use of chemical pesticides has generally worked well over the past decades, but the long term application of pesticides resulted in increased BPH resistance to chemical insecticides and presents the risk of destroying the environment (Heinrichs et al 1982; Tanaka et al 2000). It is very necessary and imperative to detect more novel resistant genes and to elucidate the resistance mechanism

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call