Abstract

To investigate the use of a novel surface coil for clinically utilized magnetic resonance imaging (MRI) scanners, in order to describe the microanatomic basis for hand osteoarthritis (OA) at all stages of disease. MRI of proximal or distal interphalangeal joints was performed in 58 subjects: 16 patients with early OA (symptom duration < or =12 months), 14 patients with chronic OA, 10 patients with clinically normal asymptomatic joints adjacent to arthritic joints, and 18 normal controls. High-resolution images were obtained with displayed pixel dimensions of 80-100 mum using a 1.5T scanner and a 23-mm-diameter surface coil. All joint structures were evaluated. The high-resolution images of every joint structure showed comparable abnormalities in both early and chronic OA, including cartilage loss, bone edema, synovial enhancement, osteophytosis, and erosions. Heberden's and Bouchard's node formation occurred at regions where soft tissue bulged through the capsule between the dorsal tendons and collateral ligaments (CLs). Prominent CL thickening or disruption (100% of OA patients) was evident even in joints where cartilage was partially preserved. Clinically normal joints adjacent to OA hand joints showed thickening and enhancement of CLs which was the most common abnormality seen (80% of OA patients). Older normal subjects showed subtle changes within the CLs. Obtaining high-resolution MR images from clinically utilized scanners represents a novel way for exploring the microanatomic basis of hand arthritis and may have considerable potential in the clinical setting. In the present evaluation in nodal OA, previously unappreciated CL abnormalities were especially common.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.