Abstract

Acquiring light field with larger angular resolution and higher spatial resolution in low cost is the goal of light field capture. Combining or modifying traditional optical cameras is a usual method for designing light field capture equipment, among which most models should deliberate trade-off between angular and spatial resolution, but augmenting coded aperture avoids this consideration by multiplexing information from different views. On the basis of coded aperture, this paper suggests an improved light field camera model that has double measurements and one mask. The two compressive measurements are respectively realized by a coded aperture and a random convolution CMOS imager, the latter is used as imaging sensor of the camera. The single mask design permits high light efficiency, which enables the sampling images to have high clarity. The double measurement design keeps more correlation information, which is conductive to enhancing the reconstructed light field. The higher clarity and more correlation of samplings mean higher quality of rebuilt light field, which also means higher resolution under condition of a lower PSNR requirement for rebuilt light field. Experimental results have verified advantage of the proposed design: compared with the representative mask-based light field camera models, the proposed model has the highest reconstruction quality and a higher light efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.