Abstract

With the introduction of a Kelvin probe mode to atomic force microscopy, the so called scanning Kelvin probe force microscopy (SKPFM), the Kelvin probe technique finds application in a steadily increasing number of different fields, from corrosion science to microelectronics and biosciences. For many of these applications, high resolution is required as the relevant information lies in the sub-microscopic distribution of work functions or potentials, which explains the increasing interest in SKPFM. However, compared to the standard scanning Kelvin probe (SKP) technique SKPFM is prone to much more artefacts, which are often not taken into account in the interpretation of the results, as is also the case with the real physical nature of the measured data. A critical discussion of possible artefacts and on the interpretation of the data is presented in this paper, with the main focus on application in corrosion science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call