Abstract

An improved peak-to-peak method is developed for interrogating the absolute cavity length of fiber optic extrinsic Fabry-Perot interferometric (EFPI) sensors with high resolution. A fiber Fabry-Perot tunable filter (FFP-TF) is used to scan the optical spectrum of an EFPI, and the problems caused by the nonlinear performance and poor repeatability of the FFP-TF are removed by using a wavelength calibration technique. A linear fitting is used to calculate the wavelength spacing between two adjacent apexes in the optical spectrum, and the cavity length can be retrieved using this wavelength spacing. The experimental results show that the measuring resolution is improved from 25 to 1 microm, and a linear output is also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call