Abstract

<p>In September 2017, volcanic unrest in the vicinity of Mount Agung, Bali, Indonesia, increased drastically as a dike intruded between Agung and Batur volcanoes. This intrusion was followed by 5 weeks of declining activity before the eventual explosive eruption from Agung’s summit starting on November 21, 2017. We use high-resolution satellite SAR imagery to detect pre-eruptive intra-crater uplift at Agung volcano. We show that deformation of the crater floor occurred together with the dike intrusion to the northwest of the volcano. We attribute the deformation to a hydrothermal system less than 300 m below the surface that was activated by the injection of magmatic gasses. This finding indicates that Agung’s shallow magmatic system was active from the start of the increased unrest. Additionally, we observe a pulse of intra-crater uplift within 3-0.5 days prior to the onset of the eruption. The second pulse of uplift was one of the only precursors to the eruption and was probably caused by interaction between the hydrothermal system and the ascending magma. The detection of localized deformation during a volcanic crisis has important implications for eruption and unrest forecasting at Mount Agung and similar volcanoes and argues for monitoring with high-resolution SAR, which is capable of achieving both outstanding spatial resolution and, if sufficient satellites are used, excellent temporal coverage.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call