Abstract

A comparative study of the length scales and morphology of dissipation fields in turbulent jet flames and non-reacting jets provides a quantitative analysis of the effects of heat release on the fine-scale structure of turbulent mixing. Planar laser Rayleigh scattering is used for highly resolved measurements of the thermal and scalar dissipation in the near fields of CH4/H2/N2 jet flames (Red = 15,200 and 22,800) and non-reacting propane jets (Red = 7,200–21,700), respectively. Heat release increases the dissipation cutoff length scales in the reaction zone of the flames such that they are significantly larger than the cutoff scales of non-reacting jets with comparable jet exit Reynolds numbers. Fine-scale anisotropy is enhanced in the reaction zone. At x/d = 10, the peaks of the dissipation angle PDFs in the Red = 15,200 and 22,800 jet flames exceed those of non-reacting jets with corresponding jet exit Reynolds numbers by factors of 2.3 and 1.8, respectively. Heat release significantly reduces the dissipation layer curvature in the reaction zone and in the low-temperature periphery of the jet flames. These results suggest that the reaction zone shields the outer regions of the jet flame from the highly turbulent flow closer to the jet axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call