Abstract

Abstract This paper presents a new method to analyze high-resolution altimeter waveforms in terms of surface backscatter. Over the ocean, a basic assumption of modeling altimeter echo waveforms is to consider a homogeneous sea surface within the altimeter footprint that can be described by a mean backscatter coefficient. When the surface backscatter varies strongly at scales smaller than the altimeter footprint size, such as in the presence of surface slicks, rain, small islands, and altimeter echoes can be interpreted as high-resolution images of the surface whose geometry is annular and not rectangular. A method based on the computation of the imaging matrix and its pseudoinverse to infer the surface backscatter at high resolution (~300 m) from the measured waveforms is presented. The method is tested using synthetic waveforms for different surface backscatter fields and is shown to be unbiased and accurate. Several applications can be foreseen to refine the analysis of rain patterns, surface slicks, and lake surfaces. The authors choose here to focus on the small-scale variability of backscatter induced by a submerged reef smaller than the altimeter footprint as the function of tide, significant wave height, and wind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.