Abstract

Numerous practical applications ― such as non destructive evaluation of industrial structures, acoustic characterization of musical instruments, and acoustic mapping of sound sources in a known propagation medium ― involve source detection and characterization. In the past, this problem has been investigated using different beamforming and backpropagation methods. In this work, a new technique, based on the time reversal sink concept, is used to detect active sound sources with a limited number of measurement points. The theory and application of super-resolution focusing of sound and vibration using a time-reversal sink (TRS) have been studied, both in ultrasonic regime and in audible range. A high-resolution imaging technique based on a numerical time reversal sink has recently been developed by the authors for vibrational imaging of active sources in a dispersive medium. In this paper, the numerical time reversal sink imaging technique is adapted to the case of high-resolution acoustic imaging of active sound sources in a three-dimensional free field. This technique allows high-resolution imaging and provides a new method of characterization and detection of sound sources. All results show the high resolution imaging capabilities of this new technique when compared with classical time-reversal (TR) backpropagation. More than simply detecting the position of the acoustic source, this technique allows to detect the size of the active sources. This technique provides an alternative to other imaging and source detection techniques, such as three-dimensional acoustic holography and beamforming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call