Abstract

This work evaluates the possibility of placement of high-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) within precision medicine by assessing the suitability of LA-ICP-MS as a micro-analytical technique for the localization and quantification of membranous receptors in heterogeneous cell samples that express both the membrane-bound receptors C-X-C chemokine receptor type 4 (CXCR4) and epidermal growth factor receptor (EGFR). Staining of the breast cancer cell lines MDA-MB-231 X4 and MDA-MB-468 was achieved using receptor-specific hybrid tracers, containing both a fluorophore and a DTPA single-lanthanide chelate. Prior to LA-ICP-MS imaging, fluorescence confocal microscopy (FCM) imaging was performed to localize the receptors, hereby enabling direct comparison. Based on the different expression levels of CXCR4 and EGFR, a distinction could be made between the cell lines using both imaging modalities. Furthermore, FCM and LA-ICP-MS demonstrated complementary characteristics, as a more distinct discrimination could be made between both cell lines based on the EGFR-targeting hybrid tracer via LA-ICP-MS, due to the intrinsic CXCR4-related green fluorescent protein (GFP) signal present in the MDA-MB-231 X4 cells. Employing state-of-the-art LA-ICP-MS instrumentation in bidirectional area scanning mode for sub-cellular imaging of MDA-MB-231 X4 cells enabled the specific binding of the CXCR4-targeting hybrid tracer to the cell membrane to be clearly demonstrated. The stretching of cells over the glass substrate led to a considerably higher signal response for pixels at the cell edges, relative to the more central pixels. The determination of the expression levels of CXCR4 and EGFR for the MDA-MB-468 cell line was performed using LA-ICP-MS single-cell analysis (sc-LA-ICP-MS) and external calibration, based on the quantitative ablation of Ho-spiked dried gelatin droplet standards. Additionally, a second calibration approach was applied based on spot ablation of highly homogeneous dried gelatin gels in combination with the determination of the ablated volume using atomic force microscopy (AFM) and yielded results which were in good agreement with the expression levels determined via flow cytometry (FC) and mass cytometry (MC). Hybrid tracers enable a direct comparison between (i) FCM and LA-ICP-MS imaging for the evaluation of the microscopic binding pattern and between (ii) FC, MC and sc-LA-ICP-MS for the quantification of receptor expression levels in single cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call