Abstract

The absorption spectrum of cyclopropane, C3H6, was measured in the region between 790 and 950 cm−1 on a high-resolution Fourier transform spectrometer. The section containing the Q-branches of the perpendicular band of the ν11 vibration of species E′ was deconvolved to an effective line width of 0.0020–0.0025 cm−1. The structure of the ν11 band is strongly affected by l-type resonance. A total of 88 sub-bands with KΔK = −42 to 45 have been assigned in this band. The K = 4–3 and 2–3 sub-bands both exhibit K doubling of the lines with high J resulting from a combined effect of the off-diagonal matrix elements [Formula: see text], [Formula: see text], and [Formula: see text] with the l doubling in the K = 1, l = 1 state. Otherwise, the ν11 band is found to be free of perturbations by other vibrational states, in spite of the fact that a Jx,y Coriolis interaction is allowed by selection rules with the ν7 band (species [Formula: see text]) whose band origin is only 14.38 cm−1 below that of ν11. This shows that the value of [Formula: see text] is essentially zero. Also, the allowed Jz Coriolis interaction with the ν10 state, which lies 160.01 cm−1 above ν11, does not noticeably affect the two bands. A Hamiltonian matrix, including the matrix elements responsible for the K doubling and l-type resonance, was used for the treatment of the ν11 band. A set of accurate ground state constants and spectroscopic constants for the upper state ν11 is reported that reproduces 3240 observed lines of this band with a standard deviation of 0.0009 cm−1. Lines of the parallel band ν7 are just barely seen between the ν11 lines, which are perhaps 30–50 times stronger. Spectroscopic constants for the ν7 band have been obtained from 135 individual lines assigned to the Q- and R-branches of sub-bands with K = 6–21.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.