Abstract

Using high-resolution Laplace deep-level transient spectroscopy (DLTS), we have compared the electron emission characteristics of vacancy-related defects in silicon. The samples include material irradiated with high-energy protons, material implanted with a heavy ion and silicon irradiated with 2 MeV electrons. We show that in the proton- and electron-irradiated material the DLTS peak in the region of the (- -/-) state of the divacancy at E c=0.23 eV contains only one feature. The DLTS peak at 250 K which contains the signal derived from the (-/0) state of the divacancy is much larger in ion-implanted silicon than in electron-irradiated silicon. The Laplace DLTS is able to resolve clearly the (-/0) divacancy state and the V–P defect, whereas conventional DLTS shows only a broad peak in that region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.