Abstract
This paper considers the problem of estimating the direction-of-arrival (DOA) of one or more signals using an array of sensors, where some of the sensors fail to work before the measurement is completed. Methods for estimating the array output covariance matrix are discussed. In particular, the maximum-likelihood (ML) estimate of this covariance matrix and its asymptotic accuracy are derived and discussed. Different covariance matrix estimates are used for DOA estimation together with the MUSIC algorithm and with a covariance matching technique. In contrast to MUSIC, the covariance matching technique can utilize information on the estimation accuracy of the array covariance matrix, and it is demonstrated that this yields a significant performance gain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.