Abstract
X-ray Compton spectroscopy is one of the few direct probes of the electron momentum distribution of bulk materials in ambient and operando environments. We report high-resolution inelastic x-ray scattering experiments with high momentum and energy transfer performed at a storage-ring-based high-energy x-ray light source facility using an x-ray transition-edge sensor (TES) microcalorimeter detector. The performance was compared with a silicon drift detector (SDD), an energy-resolving semiconductor detector, and Compton profiles were measured for lithium and cobalt oxide powders relevant to lithium-ion battery research. Spectroscopic analysis of the measured Compton profiles demonstrates the high-sensitivity to the low-Z elements and oxidation states. The line shape analysis of the measured Compton profiles in comparison with computed Hartree-Fock profiles is usually limited by the resolution of the semiconductor detector. We have characterized an x-ray TES microcalorimeter detector for high-resolution Compton scattering experiments using a bending magnet source at the Advanced Photon Source with a double crystal monochromator, providing monochromatic photon energies near 27.5keV. The momentum resolution below 0.16 atomic units (a.u.) was measured, yielding an improvement of more than a factor of 7 over a state-of-the-art SDD for the same scattering geometry. Furthermore, the lineshapes of narrow valence and broad core electron profiles of sealed lithium metal were clearly resolved using an x-ray TES compared to smeared and broadened lineshapes observed when using the SDD. High-resolution Compton scattering using the energy-resolving area detector shown here presents new opportunities for spatial imaging of electron momentum distributions for a wide class of materials with applications ranging from electrochemistry to condensed matter physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.