Abstract

Optical tweezers are versatile tools capable to separate microparticles, yet present formidable challenges in the separation of nanoparticles smaller than 200 nm. The difficulties arise from the controversy on the requirement of a tightly focused light spot in order to create strong optical forces while a large area is kept for the sorting. To overcome this problem, we create a near-field potential well array with connected tiny hotspots in a large-scale. This can separate nanoparticles with sizes from 100 to 500 nm, based on the differentiated energy depths of each potential well. In this way, nanoparticles of 200, 300 and 500 nm can be selectively trapped in this microchannel by appropriately tuning the laser power. Our approach provides a unprecedent solution for optical trapping and separation of nanoparticles and biomolecules, so that it presents a huge potential in the physical and biomedical sciences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call