Abstract

Fourier ptychographic microscopy (FPM) is a promising and fast-growing computational imaging technique with high resolution, wide field-of-view (FOV) and quantitative phase recovery, which effectively tackles the problems of phase loss, aberration-introduced artifacts, narrow depth-of-field and the trade-off between resolution and FOV in conventional microscopy simultaneously. In this review, we provide a comprehensive roadmap of microscopy, the fundamental principles, advantages, and drawbacks of existing imaging techniques, and the significant roles that FPM plays in the development of science. Since FPM is an optimization problem in nature, we discuss the framework and related work. We also reveal the connection of Euler’s formula between FPM and structured illumination microscopy. We review recent advances in FPM, including the implementation of high-precision quantitative phase imaging, high-throughput imaging, high-speed imaging, three-dimensional imaging, mixed-state decoupling, and introduce the prosperous biomedical applications. We conclude by discussing the challenging problems and future applications. FPM can be extended to a kind of framework to tackle the phase loss and system limits in the imaging system. This insight can be used easily in speckle imaging, incoherent imaging for retina imaging, large-FOV fluorescence imaging, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call