Abstract

This paper briefly reviews the potential applicability of analytical transmission electron microscopy (TEM) to elucidate both structural and chemical peculiarities of materials at high lateral resolution. Examples of analytical TEM investigations performed by energy-dispersive X-ray spectroscopy (EDXS), electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM) are presented for different materials systems including metals, ceramics, and compound semiconductors. In particular, results are given of imaging the element distribution in the interface region between gamma matrix and gamma' precipitate in the nickel-based superalloy SC16 by energy-filtered TEM. For core-shell structured BaTiO(3) particles the chemical composition and even the chemical bonding were revealed by EELS at a resolution of about 1 nm. A sub-nanometer resolution is demonstrated by energy-selective images of the Ga distribution in the surrounding of (In,Ga)As quantum dots. Moreover, the element distribution in (Al,Ga)As/AlAs multilayers with linear concentration gradients in a range of about 10 nm was investigated by EDXS line-profile analyses and EFTEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.