Abstract

Abstract The Center for Materials Science and Engineering at MIT, a Materials Research Science and Engineering Center sponsored by the National Science Foundation, maintains and supports, amongst others, an Electron Microscopy Shared Experimental Facility. The purpose of this paper is to highlight selected recent research results for high-resolution investigations performed in that facility. The facility owns the first VG HB603 intermediate-voltage FEG-STEM, which operates at 250KeV and is equipped with a high-solid-angle x-ray detector and a Gatan Digi-Peels. It was intended to be, and has been, used for high sensitivity, high spatial resolution microanalysis. It is well-known that the “resolution” of an x-ray analysis is intimately (and inversely) related to its sensitivity; one extreme situation occurs when analyzing, for example, a diffusion profile, when the need is to determine the composition to the highest precision. An example of such an analysis is given in fig. 1. In this case, the sample is a 1.4Cr-0.8C pearlitic steel, and the chromium analysis is carried out across a cementite plate. During the growth of the pearlite, the chromium, which is not thermodynamically required to redistribute, nevertheless diffuses along the growth interface towards the cementite, resulting in a comparatively wide depletion profile in the ferrite, and a very narrow enrichment in the cementite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.