Abstract

High-resolution measurement techniques for distributed and fast soil water dynamics could advance the understanding of subsurface infiltration processes on the plot scale when it can combine high spatial and temporal resolution with a high repeatability of the measured data. Ground-penetrating radar (GPR) is a promising geophysical tool to image and quantify subsurface flow processes in a non-invasive fashion. In the literature, different strategies to collect time-lapse GPR data have been presented. However, so far, no standardized data acquisition and analysis strategy has been established to monitor subsurface changes related to water infiltration and to compare the outcomes of different experiments. Here, we present a 4D-GPR measurement strategy to monitor infiltration experiments by combining an irrigation pad (to simulate moderate rain fall events) with a manually operated 3D GPR measurement platform (equipped with a two-channel GPR antenna array and positioning guides). For investigating the repeatability and resolution limits of our measurement strategy, we conducted a systematic field experiment with two recurrent irrigations at two nearby spots at a selected field plot. Our results show that we can reliably monitor non-uniform subsurface flow processes with a spatial resolution < 5 cm and a temporal resolution below 10 minutes. Because of these so far unreached spatial and temporal resolution capabilities we consider our 4D-GPR measurement strategy as a first step toward a standardized strategy for monitoring infiltration processes. Furthermore, such detailed knowledge about the resolution and repeatability limits of 4D-GPR measurements opens new options for further interpretation approaches, for example without assumptions about a horizontally stratified subsurface model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.