Abstract

Magic angle sample spinning with speeds of up to 25 kHz has been applied to obtain high-resolution solid-state 19F NMR spectra of fluorocarbon films deposited by pulsed plasma-enhanced chemical vapor deposition (PECVD) from hexafluoropropylene oxide. Compared to XPS, the common characterization method for fluorocarbon thin-film analysis, 19F NMR is demonstrated to provide greater structural information which is important in unraveling the complexity of plasma films. Seven fluorocarbon resonancesthree CF3 sequences, three CF2 sequences, and a CF resonancewere distinguished, based on differences in next nearest-neighbor bonding environment. Total CFx (x = 1−3) fractions, as quantified by NMR, agreed with independent XPS results. Line width variation of the assigned resonances resulted from isotropic shift dispersion, arising from connectivity permutation statistics and from the relative mobility of fluorocarbon moieties, which can be hindered by cross-links or branch junctions. With lower pulsed plasma deposition duty cycles, resulting films contained more linear CF2 chains. Cross-linking, branching, and irregular chain terminations, arising from plasma ion bombardment and excessive gas-phase fragmentation during film growth, are reduced. The thermal decomposition mechanism shifted from a loss of CF3 end groups to a loss of linear chain fragments as a result of changes in film structure with longer deposition pulse off-time. There is evidence to indicate thermal desorption of oligomers or radical-enhanced depolymerization for films deposited at lower duty cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.