Abstract

Experiments and thermal modeling of indium tin oxide transparent conductive thin film and polyimide alignment thin film coated on fused silica substrates damaged with a 1064 nm high-repetition-rate laser are described. High-repetition-rate laser irradiation results in damaged morphologies of the bulge at a low laser power density and formation of a pit in the center of the bulge at higher laser power density. The damage process that is consistent with the observations as a function of laser power density and irradiation time is related to thermal effect. Simulation of the temperature-rise by exposure to high-repetition-rate laser describes the thermal effect with different pulse oscillation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call