Abstract

A 100 kHz krypton (Kr) tagging velocimetry (KTV) technique was demonstrated in a Mach-6 Ludwieg tube using a burst-mode laser-pumped optical parametric oscillator system. The single-beam KTV scheme at 212 nm produced an insufficient signal in this large hypersonic wind tunnel because of its low Kr seeding (≤5%), low static pressure (∼2.5torr), and long working distance (∼1m). To overcome these issues, a new scheme using two excitation beams was developed to enhance KTV performance. A 355 nm laser beam was combined with the 212 nm beam to promote efficient two-photon Kr excitation at 212 nm, and increase the probability of 2 + 1 resonant-enhanced multiphoton ionization by adding a 355 nm beam. A signal enhancement of approximately six times was obtained. Using this two-excitation beam approach, strong long-lasting KTV was successfully demonstrated at a 100 kHz repetition rate in a Mach-6 flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.