Abstract

A high efficiency, high-rate deposition process was developed for silicon oxide films using plasma enhanced chemical vapor deposition (PECVD) with an additional ultra high frequency (UHF) power with high frequency (HF) bias. The effect of the UHF input power with HF bias on the anti-scratch properties of the silicon oxide films was examined. The hybrid plasma process was also examined by advanced plasma source. Dissociation of the octamethylycyclodisiloxane (OMCTS) precursor was controlled by the plasma processing parameters. SiO x films were deposited on polycarbonate substrates by PECVD using OMCTS and oxygen carrier gas. The rate of SiO x film deposition increased with increasing input energy. The plasma was analyzed by optical emission spectroscopy. The deposition rate was characterized using an alpha-step. The mechanical properties of the coatings were examined using a nano-indenter and pencil hardness measurements. The chemical properties of the coatings were examined by Fourier transform infrared spectroscopy. The deposition rate of the SiO x films was controlled by the dissociation of OMCTS using the appropriate intensity of excited neutrals, ionized atoms and input UHF input power with HF bias at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.