Abstract
Locally decodable codes are error-correcting codes that admit efficient decoding algorithms; any bit of the original message can be recovered by looking at only a small number of locations of a corrupted codeword. The tradeoff between the rate of a code and the locality/efficiency of its decoding algorithms has been well studied, and it has widely been suspected that nontrivial locality must come at the price of low rate. A particular setting of potential interest in practice is codes of constant rate. For such codes, decoding algorithms with locality O ( k∈ ) were known only for codes of rate ∈ Ω(1/ ∈ ), where k is the length of the message. Furthermore, for codes of rate > 1/2, no nontrivial locality had been achieved. In this article, we construct a new family of locally decodable codes that have very efficient local decoding algorithms, and at the same time have rate approaching 1. We show that for every ∈ > 0 and α > 0, for infinitely many k , there exists a code C which encodes messages of length k with rate 1 − α , and is locally decodable from a constant fraction of errors using O ( k∈ ) queries and time. These codes, which we call multiplicity codes, are based on evaluating multivariate polynomials and their derivatives. Multiplicity codes extend traditional multivariate polynomial codes; they inherit the local-decodability of these codes, and at the same time achieve better tradeoffs and flexibility in the rate and minimum distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.