Abstract

Graphene aerogel (GA) is successfully prepared through hydrogen reduction of graphene oxide aerogel (GOA) which is self-assembled from graphene oxide solution and subsequently dried by a supercritical CO2 method. The morphology, structure and surface property evolution in the preparation of GA are investigated intensively by a variety of means such as atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), N2 adsorption, X-ray diffraction (XRD), Raman spectroscopy, ultraviolet-visible absorption spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). A self-assembly mechanism based on the hydrogen-bonding interactions between hydroxyl groups and carbonyl groups is proposed for the first time to explain the formation of GA. As evidenced by elemental analysis (EA) and electrochemical measurements, this three dimensional GA has an unprecedented high C/O molar ratio of 69.9, which contributes to the excellent high-rate performance of this material for supercapacitor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.