Abstract

Blue phosphors of high efficiency and superior thermal stability constitute the critical component for achieving high-quality white light-emitting diodes (WLEDs). Herein, we report a highly efficient blue-emitting phosphor with superior thermal stability by heating Eu3+-doped Faujasite Y zeolite under a reducing atmosphere. The intensity and peak value of the phosphor are highly dependent on calcination temperature, and the intensity of PLE and PL spectra reaches a maximum at 1100 °C. Under the excitation of 360 nm, the phosphor shows a high quantum efficiency (90%) and thermal stability (the emission intensity at 423 K is about 125% of that at room temperature). WLEDs fabricated using this blue phosphor, a yellow Eu2+-SOD phosphor, and a commercially available red Sr2Si5N8:Eu2+ phosphor exhibit an excellent optical performance with a correlated color temperature of 4359 K and a color rendering index of 97. This work provides a new strategy for the synthesis of phosphors with high thermal stability and luminous efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call